
Theoret. chim. Acta (Berl.) 21, 301--308 (1971) 
© by Springer-Verlag 1971 

Finite Analytical Expressions 
for Two-Centre Exchange Integrals between Slater Orbitals 

Having the Same Exponents 
T. ~IV~ZOVId* and J . N .  MURRELL 

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, England 

Received November 4, 1970 

Closed analytical expressions are derived for some two-centre exchange integrals between Slater 
orbitals. Integrals involving Is, 2s and 2pa orbitals are considered with the restriction that the two 
orbitals have the same exponent. An expansion formula accurate for large values of R is also derived. 

Fiir eine Reihe von Zweizentren-Austauschintegralen zwischen Slaterorbitalen werden ge- 
schlossene analytische Ausdriicke mitgeteilt, wobei allerdings nur is-, 2s- und 2ptr-Orbitale mit 
gleichen Exponenten behandelt werden. SchlieBlich wird noch eine asymptotische Entwicklung fiir 
grofle R angegeben. 

Obtention d'expressions analytiques compactes pour certaines int6grales d'6change bicentriques 
entre orbitales de Slater. On consid6re des int6grales impliquant des orbitales ls, 2s et 2per avec comme 
restriction l'6galit6 des exposants orbitaux. Un d6veloppement valable pour les grandes valeurs de 
Rest aussi obtenu. 

1. Introduction 

Two-electron exchange integrals between Slater-type orbitals are usually 
evaluated by expansion methods in which the integral is expressed in terms of 
auxiliary functions. A review of the most  popular  methods is given by Alder and 
coworkers [1]. The accuracy of any integral can always be improved by increasing 
the length of the expansion. However, the rate of convergence to the exact value 
will not be the same for all integrals and in particular it will depend strongly on the 
distance between the two orbital centres. We encountered difficulties in using the 
established procedure to calculate exchange integrals at large internuclear separa- 
tions. These integrals were needed to evaluate interatomic energies in the van- 
der-Waals region and the problem encountered was that the integrals were small 
but one requires them with considerable accuracy because of a cancellation of 
terms that occurs in the total energy expression [2]. 

In 1931 Podolansky [-3] showed that all exchange integrals could in principle 
be represented by closed analytical expressions which involve powers, exponentials, 
the logarithmic and the exponential integral. To our knowledge such an expression 
has only been obtained for the case of two Is orbitals with equal exponents 1. 
This is worked out in detail by Slater, who expresses the view that this is almost 

* On leave from the Institute Ruder Boskovi6, Zagreb, Jugoslavia. 
1 The integral was first evaluated by Sugiura, Y.: Z. Physik 45, 484 (1927). 
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the only case that can be treated in this way [4]. In this paper we show that closed 
analytical expressions can be obtained for other axially symmetric orbitals 
(2s, 2pa, etc.) with equal exponents. We also develop an expansion technique for 
these cases which has rapid convergence at large internuclear distances. We have 
not, as yet, extended the method to orbitals with different exponents, or to orbitals 
without axial symmetry. 

We present our results partly with the aim of stimulating further research in 
this field. A general advance in developing analytical expressions for two-electron 
integrals in a Slater orbital basis, or in improving the expansion techniques, 
would have a considerable impact on the time required for molecular calculations 
and on the size of molecules susceptible to nonempirical calculations. 

An additional justification for this work is that it provides exact expressions 
for a few cases against which the more widely applicable expansion techniques 
can be tested. 

2. General Theory 

We follow the symbolism used by Ruedenberg 1-5] and refer the reader to 
that paper for full definition of the terms introduced. The integral to be evaluated 
has the form 

I = ~ f2ab(1)r~-21 f2ab(2)dv 1 dv2, (1) 

where f2~b(1 ) is a product of normalised Slater orbitals on diffrent centres. The 
integrals are most conveniently handled in elliptic co-ordinates (¢, q, q~). The 
operator ri-~ is written as the Neumann expansion in associated Legendre functions 
of the first and second kind pJ,,I and QI ml. We have used the definitions of these 
functions of Jahnke and Emde [6], as adopted by Ruedenberg [5]. We shall 
consider only the case of equal screening constants (fl = 0) and axially symmetric 
orbitals (m = 0). After integration over the elliptic coordinates qh and q~2, r/t, q2, 
and ¢i, the integral to be evaluated has the form 

( 2(,,+,b)+1 ~ (21+l)~Qt(¢2)Kt(¢2)Mt(~z, oOe-,¢2d~2 (2) 
I =  -~-7 *=o 1 

where 
~2 

Ml (42, a) = y Pz(¢,) Kl(¢l) e-~'¢ld¢l 
1 

and where K~ and M, are just polynomials 2. The summation over I does not 
in practice extend to infinity because of the orthogonality of the Legendre 
polynomials. 

The functions Q~(¢) are made up of logarithmic and polynomial terms. For 
example the first member is 

Qo = ln((¢ + 1)/(¢ - 1)). (3) 

Detailed expressions for the higher members can be found in Ref. [6]. 

2 If (. and ~b are the exponents of the Slater orbitals whose product is ~2.b, and R is the inter- 
nuclear distance, then we have defined ( = ½((. + (b) and c~ = (R. 
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The polynomial part can be easily integrated, but integrals involving the 
logarithmic function are more difficult. We first change the range of integration 
by introducing the variable x = ~ - 1. This leads to a number of terms each of 
which has the form 

X2 

X(x2)ln((x2 + 2)/x2) e -=~2 I Y(xl) e-'X'dxldx2 (4) 
0 0 

the functions X and Y being polynomials. Each of these integrals is split into three 
parts by using the identity 

ln((x + 2)/x) = ln2a + ln(1 + x/2) - l n ax ,  (5) 

where a is introduced for computational convenience. The integrals involving 

ln2a and lnax can be evaluated using the expressions 

and 

r ( n )  _ (n-1).v ~ x =-1 e - ~ x d x -  ~. ~. (6) 
0 

r'(n) 
0 xn-llnctxe - ~ x d x -  a" , (7) 

where F' is the derivative of the F-function the first member of which F'(1) is 
Euler's constant. These may be evaluated from the recursion relation 

r ' (n  + 1) = r (n)  + nr'(1). (8) 

The remaining integral involving In (1 + x/2) may be evaluated as a semi-convergent 
series or it may be expressed in terms of the exponential integral. We describe 
both methods. 

3. The Series Expansion 

We prove in the appendix that 

~x, ,_ l ln( l+x)e_~dx= ~ (_ l ) i+  1 ( n + i - 1 ) !  
io~ n+i 

0 i=1 

where 

+ Rd~), (9) 

Thus for large values of ~t the remainder decreases up to the term r ~ c t -  n and 
increases thereafter to infinity. If we terminate the summation at this value of r 
we have a value of the integral with an accuracy 

F(~ + 1) 
[R(c0[ < (a - n + 1) ~+1 • (11) 

(r + n) ! 
IRr(~)l < ( r+  1) ~,+,+1 • (10) 
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Table 1 a 

k A k B k 

2 p a - 2 p a  

1 -0 .215524446E-02  0.634920635E-02 
2 -0 .367409905E-01  0.380952381E-01 
3 -0.298154438E 00 0.152380952E 00 
4 -0.204927873E 02 0.952380952E 00 
5 -0.112353809E 02 0.634285714E 0! 
6 -0 .487369100E 02 0,325714286E 02 
7 -0.176872781E 03 0.134000000E 03 
8 -0,537397619E 03 0.464571429E 03 
9 -0.126239734E 04 0.133628571E 04 

10 -0.197965535E 04 0.300000000E 04 
11 -0 .139561611E04  0.486000000E 04 
12 0.130338781E 04 0.504000000E 04 
13 0,309931186E 04. 0.252000000E 04 
14 0.204491629E04 0.000000000E 00 
15 -0.577867222E 04 0.000000000E 00 

In alt tables the numbers  are given in E Germat,  that is NE---02 = N x 10 -z.  

After collecting the terms in ! arising from these separate integrations the 
integral has the form 3 

I = c~"( ~ oc-k[Ak+Bkln~]e -2~, (12) 
k= l  

where n = 2n, + 2n b and A k and B k are coefficients which are characteristic of the 
orbital types occurring. In practice we found for ~ > 5 that approximately 15 terms 
gives an accurate value of the integral. The coefficients A k and B k are given in 
Table 1 for the 2pa - 2pa integral, and in Table 3 we compare values of this 
integral with those obtained by the MIDIAT program 4. The coefficients for the 
remaining integrals involving ls, 2s and 2pa orbitals may be had from the authors 
on request. For  c~ > 9 the expansion gives integrals whose accuracy is determined 
by the accuracy of Ag and Bk, which in these calculations is given to nine significant 
figures. 

4. Closed Expressions Involving the E 1 Function 

The integral (9) may also be expressed in terms of the exponential integral 

e -  t 
El(x ) = d t .  (13) 

t X 

3 The lnct arises from the term in (13) which is ln2cc 
4 MIDIAT is a two-centre integral program originally written by Switendick and Corbato. 

The theory is described by an article in Ref. [1]. A modification has been made to run on the ICL 1905 
computer,  which is a relatively slow machine with small store (32 K). Each exchange integral requires 
several minutes with this program whereas they can be calculated at a rate of about  ten a second 
from the expressions given in this paper. 
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Table 2 

k Pk Qk Rk 

I s -  ls 

1 0.102954220E-01 0.133333333E 00 0.266666666E 00 
2 -0.138227468E 00 0.800000000E 00 0.000000000E 00 
3 0.443132987 E -  02 0.200000000 E 01 - 0.800000000 E 00 
4 0.201031760E 01 0.240000000E 01 0.000000000E 00 
5 0.692658798 E 00 0.120000000 E 01 0.240000000 E 01 

2s - 2s 

1 - 0.239471606 E -  03 0.705467372 E - 03 0.141093474 E - 02 
2 -0.598515769 E - 0 2  0.776014109E-02 0.000000000 E 00 
3 - 0.429793835 E -  01 0.536155203 E - 01 0.197530864 E - 01 
4 -0.176717113E 00 0.251851852E 00 0.000000000E 00 
5 - 0.563571275 E 00 0.850793651 E 00 0.677248678 E - 01 
6 - 0.657159359 E 00 0.209100529 E 01 0.000000000 E 00 
7 -0.102134818E 01 0.359365079E 01 -0.457142857E 00 
8 0.256952782E 01 0.382222220E O1 0.000000000E 00 
9 0.110312336E 01 0.191111103E 01 0.382222222E 01 

2pa - 2pa 

1 - 0.215524446 E -  02 0.634920635 E -  02 0.126984127 E -  01 
2 -0.415028947 E - 0 1  0.380952381E-01 0.000000000 E 00 
3 -0.304900468E 00 0.152380952E 00 0.000000000E 00 
4 -0.201177873 E 01 0.952380952E 00 0.000000000E 00 
5 -0.114795773E 02 0.634285714E 01 0.125714285E 01 
6 -0.477239636E 02 0.325714286E 02 0.000000000E 00 
7 -0.185108384E 03 0.134000000E 03 -0.514285716E O1 
8 -0.499450688E 03 0.464571429E 03 0.000000000E 00 
9 -0.138867495E 04 0.133628571 E 04 0.325714286E 02 

10 -0.162835301E 04 0.300000000E 04 0.000000000E 00 
11 -0.223473187E 04 0.486000000E 04 -0.360000000E 03 
12 0.290916695 E 04 0.504000000E 04 0.000000000E 00 
13 0.145458348E 04 0.252000000E 04 0 . 5 ~ E  04 

ls - 2s 

1 - 0.219408680 E -  02 0.126984127 E - 01 - 0.253968254 E -  01 
2 -0.297608489E-01 0.107936508E 00 0.000000000E 00 
3 - 0.246867362 E 00 0.482539683 E 00 - 0.253968254 E -  01 
4 -0.253791812E 00 0.133333333E 01 0.000000000E 00 
5 -0.474451871E 00 0.234285714E 01 -0.342857143E 00 
6 0.179503510E 01 0.251428571E 01 0.000000000E 00 
7 0.725642550E 00 0.125714286E 01 0.251428571E 01 

l s - 2 p a  

1 - 0.658226038 E - 02 0.380952381 E - 01 0.761904762 E -  01 
2 -0.160361537E 00 0.266666666E 00 0.000000000E 00 
3 -0.804472103 E 00 0.990476191E O0 -0.152380953E 00 
4 - 0.256460679 E 01 0.297142857 E 01 0.000000000 E 00 
5 -- 0.875282455 E 01 0.834285714E 01 0.685714285 E 00 
6 -0.115697504E 02 0.194285714E 02 0.000000000E 00 
7 -0.154849755E 02 0.325714286E 02 -0.342857143E 01 
8 0.197902514E 02 0.342857143 E 02 0.000000000E 00 
9 0.989512568E 01 0.171428571E 02 0.342857143 E 02 
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Table 2 (continued) 

k Pk Qk Rk 

2p - 2sa 

1 -0.718414819E-03 0.211640212E-02 - 0.423280423 E -  02 
2 - 0.116620815 E - 01 0.179894180 E - 01 0.000000000 E 00 
3 - 0.114717877 E 00 0.994708995 E - 01 - 0.253968254 E -  01 
4 - 0.566686762 E 00 0.464550265 E 00 0.000000000 E 00 
5 -0.295280898E 01 0.204656085 E 01 -0.194708995E 00 
6 -0.977379385E 01 0.816507937E 01 0.000000000E 00 
7 - 0.300916937 E 02 0.266222222 E 02 0.137142857 E 01 
8 -0.409567646E 02 0.653015874E 02 0.000000000E 00 
9 -0.538044079E 02 0.111380953E 03 -0.134285714E 02 

10 0.681664211 E 02 0.118095239E 03 0.000000000E 00 
11 0.340832102E 02 0.590476201 E 02 0.118095238E 03 

For example, for n = 1 in (9) we have 

[ l n ( l + ~  - ]~ l i e - ' Y d y e  "Y 
~ l n ( l + y )  e - ~ y d y =  + 
o ~ l+y 

e • ~ - ~  e ~ E l ( ~ )  
- - - - ! - ~ d x - e  e --h(00. 

(14) 

For n > 1 the integration is tedious but not impossible. The final integrals 
take the form 

l = ~,( ~ e-k [Pk + (ln ~ + (-- 1) k h(4e)) Qk + h(27) Rk] e- 2~. 
k = l  

(15) 

The coefficients P, Q, and R are given in Table 2. The value of r depends on the 
type of orbitals occurring in the integral. 

Expression (15) is a closed analytical expression valid for all values of e. For 
a given accuracy of the coefficients P, Q, and R, greater accuracy can be obtained 
at large ~ than at small c~ because of the cancellation of large terms. The exponential 
integral has been tabulated. Alternatively a rapid method of evaluating h(~) is 
to use the expression 

~2h(~)= e 4 + a l e 3 + a 2 c ~ 2 + a 3 ~ + a 4  +e(c 0. (16) 
~4 _~ b l~3  _}_ b2~2 + b3 ~ _}_ b4 

The coefficients are listed in Ref. [7] to ten decimal places and give an accuracy 
of better than 2 x 10 -8 for 1 < e < Go. 

The results obtained from expression (15) for the 2po-  2pa integral are also 
shown in Table 3. The integrals are in agreement with those obtained by the 
expansion method to nine significant figures for e > 9, and we therefore believe 
that these integrals are accurate to nine figures. 
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Table 3. Comparison of the expansion formula (12) and the exact formula (15) with values obtained 
from the MIDIAT program for the 2per- 2pa exchange integral 

a Expression (12) Expression (15) MIDIAT program 

2 -0.306417211E 00 0.439915223E-01 0.439913419E±01 
4 0.783877950E-01 0.785051035E-01 0.785037689E-01 
6 0.294099453E-01 0.294098744E-01 0.294098740E-01 
8 0.431792303E-02 0.431792294E-02 0.431792278E-02 

10 0 . 3 9 2 4 7 4 2 3 9 E L 0 3  0.392474240E-03 0.392474238E-03 
15 0.324944134E-06 0.324944134E-06 0.324652299E-06 
20 0.115820626E-09 0.115820626E-09 0.115555747E-09 

The MIDIAT program gives an estimate of the accuracy to which any integral 
is calculated. For ~ = 2, for example, this is only to give five significant figures. 
The result from expression (15) is the same as from MIDIAT to this accuracy 
and we believe it is much higher. As we have already emphasised, the accuracy 
depends only on the accuracy to which the coefficients in (15) and the exponential 
integral are evaluated. 

Appendix  

In(c0 = S x n-1 ln(1 + x) e - ~ d x .  
0 

(1) 

As ln(1 + x) is analytical in the region 0 < x < o% we can use the Taylor expansion 
formula 

r 1 
f(1 + x) = ~, ~ f '(1) x i + - -  (2) 

i = 0  " 

where 0 < ~ < x. 
This gives 

1 
( r +  1)! f ( r+i)(1  + O x r + i '  

l n ( l + x ) =  i ( -1 ) /+1  Xi xr+l - -  + ( - 1 )  ~ ~)~+~ (3) 
i=l l ( r+  1)(1 + 

Inserting (3) into (1) we get 

where 

I ,(a)= ~ ( - 1 )  i+i ( n + i - 1 ) l  
ia,+ i + R,(a), (4) 

i = 1  

X r + n  

( - 1 ) '  ~ (1+¢)~+~ e-~Xdx' (5) 
R,(~)= ( r+  1) o 

1 
~" X r+n e-~Xdx  = 

r + l  o 

(r + n) ! 
[R,(~)] < (r + 1) ~+"+~ " (6) 
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